北京
<返回切换城市

北京学而思1对1>旧站备份>正文

关于n个平面最多分空间为几个部分的问题的讨论

2009-04-14 14:32:45 来源:智康刘老师
移动端banner-一对一体验

免费领取新学期学习资料

单元测试卷丨学科知识同步丨期中期末卷等

点我下载电子资料

  首先,可以通过直观想象1-3个平面较多分空间为几个部分。1个平面较多将空间分为2部分; 2个平面较多将空间分为4部分; 3个平面较多将空间分为8部分。

  若要第四个平面将空间分为较多部分,就要它与前三个平面都相交,且交线不重合。则第四个平面与前三个平面都相交,交线不重合,有三条交线,这三条交线都在第四个平面内,那么要想使这四个平面分空间为较多部分就要使这三条交线分一个平面为较多部分。显然,三条直线分一个平面较多为7部分。所以,四个平面分空间数较多为,三个平面较多分平面数加上三条直线较多分平面的部分数:8+7=15。

  推广到一般情况,n个平面较多可分空间为f(n)部分,第n个平面与n-1个平面分别相交且交线不重合,问题转化为n-1条直线较多将一个平面分成几部分

  同样,可以通过直观想象,1条直线较多可分平面为2部分;2条直线较多可分平面为4部分;3条直线较多可分平面为7部分;4直线较多可分平面为11部分.

  在4条直线较多可分平面为11部分的基础上,研究5条直线分平面为几个部分。第5条直线与前4条分别相交且交点不重合,即有4个交点,则平面又多出4个部分。即5条直线分平面为,4条直线较多可分平面数加上第5条直线与前4条直线的交点数:11+4=15。

  设n-1条直线分一个平面为g(n-1)个部分。再加上一条直线,这条直线(第n条直线)必与前n-1条直线相交且交点不重合,即有n-1个交点,直线被分为n段,每一段将空间分为两部分,即增加了n个部分,所以

  g(n)= g(n - 1) + n,

  g(n)= g(n - 1) + n

  = g(n - 2)+(n - 1)+ n

  = …

  = g(1)+ 2 + 3 + … + n

  = 2 + 2 + 3 + … + n

  = 1+ n(n+1)/2

  所以g(n-1)=1 + n(n+1)/2,n个平面较多分空间的部分数为n-1个平面较多分空间的部分数加上n-1条直线较多分平面的部分数。即

  f(n)= f(n - 1)+ g(n - 1)

  = f(n - 2)+ g(n - 2)+ g(n - 1)+ …

  = f[n -(n - 1)] + g[n -(n - 1)] + g[n -(n - 2)]+…+g(n - 1)

  = f(1)+ g(1)+ g(2)+ g(3)+ … + g(n - 1)

  = 2 + [1*(1 + 1)]/2 + 1 + [2*(2 + 1)]/2 + 1 +…+[(n - 1)*n]/2 + 1

  = 2 + (n - 1)*1 + [1*2 + 2*3 + 3*4 +…+ n*(n - 1)]/2

  = n + 1 + [(n - 1)*n*(n+1)]/(3*2)

  =(n3 + 5n + 6)/6

  所以,n个平面较多可将空间分为f(n)= (n3 + 5n + 6)/6个部分

体验预约丨学而思1对1/小班课程