单元测试卷丨学科知识同步丨期中期末卷等
高中数学导数及导数应用题!同学们在学习数学的时候导数是相当有难度的,这样同学们在学习导数部分的时候一定要多花一些精力,多研究课本上的基础知识,要把知识吃透才能学的好。下面,小编为大家带来高中数学导数及导数应用题。
1、函数的局部性质——单调性
设函数y=f(x)的定义域为I,如果对应定义域I内的某个区间D内的任意两个变量x1、x2,当x1< x2时,都有f(x1)<f(x2),那么y=f(x)在区间D上是增函数,D是函数y=f(x)的单调递增区间;当x1< x2时,都有f(x1)>f(x2),那么那么y=f(x)在区间D上是减函数,D是函数y=f(x)的单调递减区间。
⑴函数区间单调性的判断思路
ⅰ在给出区间内任取x1、x2,则x1、x2∈D,且x1< x2。
ⅱ 做差值f(x1)-f(x2),并进行变形和配方,变为易于判断正负的形式。
ⅲ判断变形后的表达式f(x1)-f(x2)的符号,指出单调性。
⑵复合函数的单调性
复合函数y=f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律为“同增异减”;多个函数的复合函数,根据原则“减偶则增,减奇则减”。
⑶注意事项
函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成并集,如果函数在区间A和B上都递增,则表示为f(x)的单调递增区间为A和B,不能表示为A∪B。
2、函数的整体性质——奇偶性
对于函数f(x)定义域内的任意一个x,都有f(x) =f(-x),则f(x)就为偶函数;
对于函数f(x)定义域内的任意一个x,都有f(x) =-f(x),则f(x)就为奇函数。
以上是部分资料截图,点击下方链接领取完整版
1什么是直棱柱
直棱柱的上下底面可以是三角形、四边形、五边形、六边形等多边形,侧面都是长方形(含正方形)。根据底面图形的边数,我们称它为直三棱柱、直四棱柱(长方体和立方体都是直四棱柱)、直五棱柱、直六棱柱。
直棱柱的所有侧棱都面且各棱相互平行,上下两个面沿竖直方向平移可重叠。但是斜棱柱的侧棱不垂直与底面,与底面成一定的夹角,各棱都相互平行,上下两个底面沿竖直方向平移不可重叠。
2什么是正棱柱
底面是正多边形的直棱柱叫做正棱柱。正棱柱是侧棱都垂直于底面,且底面是正多边形的棱柱。
特别注意:底面为正多边形,侧棱垂直于底面,但是侧棱和底面边长不一定相等。而直棱柱侧棱也是垂直于底面,侧棱和底面边长不一定相等,而且底面多边形形状也不确定。
以上就是小编特意为大家整理的高中数学导数及导数应用题的相关内容,同学们在学习的过程中如有疑问或者想要获取更多资料,请拨打学而思爱智康免费咨询电话:400-810-2680!
点击领取:《点击领取_高中数学导数练习及讲义 》
部分资料截图如下:
点击链接领取完整版资料:https://jinshuju.net/f/fzH4Lv
相关推荐:
文章来源于网络整理,如有侵权,请联系删除,邮箱fanpeipei@100tal.com