北京
<返回切换城市

北京学而思1对1>高考资讯>正文

衡水中学高二最新月考试卷,北京的同学们看过来

2021-03-21 22:36:50 来源:佚名
移动端banner-一对一体验

免费领取新学期学习资料

单元测试卷丨学科知识同步丨期中期末卷等

点我下载电子资料

 点击领取→近年衡水高中全科学霸笔记丨学习方法丨诊断试题及答案

 

  衡水中学高二较新月诊断卷,北京的同学们看过来!衡水中学的成功经验有很多,从练题目开始,供给更多同学们来参考和借鉴。下面小编就给大家准备了衡水中学高二较新月诊断卷,北京的同学们看过来!希望对大家准备有所帮助哦!加油吧,高考的勇士们!

 

想了解更多衡水中学高二较新月诊断卷,北京的同学们看过来

请拨打4000-121-121咨询

 

点击领取→近年衡水高中全科学霸笔记丨学习方法丨诊断试题及答案

  部分资料截图如下:

点击链接领取完整版>>>https://jinshuju.net/f/uchfif

 

 

  一、三角函数

  1.周期函数:一般地,对于函数f(x),如果存在一个不为0的常数T使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期,把所有周期中存在的较小正数,叫做较小正周期三角函数属于高中数学中的重点内容,在高考理科数学中更是占据很重要的位置。

  2.三角函数的图像:可以利用三角函数线用几何法作出,在准确度要求不高的情况下,常用五点法作图,要特别注意“五点”的取法。

  3.三角函数的定义域:三角函数的定义域是研究其他一切性质的前提,求三角函数的定义域实际上就是解较简单的三角不等式,通常可用三角函数的图像或三角函数线来求解,注意数形结合思想的应用。

  二、反三角函数主要是三个:

  y=arcsin(x),定义域[-1,1] ,值域[-π/2,π/2]图象用红色线条;

  y=arccos(x),定义域[-1,1] , 值域[0,π],图象用蓝色线条;

  y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2),图象用绿色线条;

  sin(arcsin x)=x,定义域[-1,1],值域 [-1,1] arcsin(-x)=-arcsinx

  三、三角函数其他公式

  arcsin(-x)=-arcsinx

  arccos(-x)=π-arccosx

  arctan(-x)=-arctanx

  arccot(-x)=π-arccotx

  arcsinx+arccosx=π/2=arctanx+arccotx

  sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)

  当x∈[—π/2,π/2]时,有arcsin(sinx)=x

  当x∈[0,π],arccos(cosx)=x

  x∈(—π/2,π/2),arctan(tanx)=x

  x∈(0,π),arccot(cotx)=x

  x〉0,arctanx=π/2-arctan1/x,arccotx类似

  若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)

  四、三角函数与平面向量的综合问题

  (1)巧妙“转化”--把以“向量的数量积、平面向量共线、平面向量垂直”“向量的线性运算”形式出现的条件还其本来面目,转化为“对应坐标乘积之间的关系”;

  (2)巧挖“条件”--利用隐含条件”正弦函数、余弦函数、的有界性“,把不等式的恒成立问题转化为含参数ψ的方程,求出参数ψ的值,从而可求函数的解析式;

  (3)活用”性质“--活用正弦函数与余弦函数的单调性、对称性、周期性、奇偶性,以及整体换元思想,即可求其对称轴与单调区间。

  五、见三角函数“对称”问题,启用图象特征代数关系:(A≠0)

  1.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于过较值点且平行于y轴的`直线分别成轴对称;

  2.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于其中间零点分别成中心对称;

  3.同样,利用图象也可以得到函数y=Atan(wx+φ)和函数y=Acot(wx+φ)的对称性质。

 

     以上就是小编特意为大家整理的衡水中学高二较新月诊断卷,北京的同学们看过来的相关内容,同学们在学习的过程中如有疑问或者想要获取更多资料,欢迎拨打学而思爱智康免费电话: 更有专业的老师为大家解答相关问题!

 

想了解更多衡水中学高二较新月诊断卷,北京的同学们看过来

请拨打4000-121-121咨询

相关推荐:

衡水中学高一第三次联诊断卷及答案

衡水2020高三三调理综试题

 

文章来源于网络整理,如有侵权,请联系删除,邮箱fanpeipei@tal.com

体验预约丨学而思1对1/小班课程