单元测试卷丨学科知识同步丨期中期末卷等
高一人教版数学必修二知识点!北京高一数学加油站! 真正的梦想,永远在实现之中,更在坚持之中。累了,就歇一歇,让手拉着手,温暖冷漠的岁月;阴霾终会散尽,狞笑终属无聊,卑鄙终会沉寂。同学们一定要加油哦~~下面一起来看看高一人教版数学必修二知识点!
【一】
1.函数的零点
(1)定义:
对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点.
(2)函数的零点与相应方程的根、函数的图象与x轴交点间的关系:
方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.
(3)函数零点的判定(零点存在性定理):
如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.
2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系
3.二分法
对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.
4.函数的零点不是点:
函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴交点的横坐标,所以函数的零点是一个数,而不是一个点.在写函数零点时,所写的一定是一个数字,而不是一个坐标.
5.对函数零点存在的判断中,必须强调:
(1)f(x)在[a,b]上连续;
(2)f(a)·f(b)<0;
(3)在(a,b)内存在零点.
这是零点存在的一个充分条件,但不必要.
6.对于定义域内连续不断的函数,其相邻两个零点之间的所有函数值保持同号.
【二】
1.等比数列的有关概念
(1)定义:
如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q表示,定义的表达式为an+1/an=q(n∈N*,q为非零常数).
(2)等比中项:
如果a、G、b成等比数列,那么G叫做a与b的等比中项.即:G是a与b的等比中项⇔a,G,b成等比数列⇒G2=ab.
2.等比数列的有关公式
(1)通项公式:an=a1qn-1.
3.等比数列{an}的常用性质
(1)在等比数列{an}中,若m+n=p+q=2r(m,n,p,q,r∈N*),则am·an=ap·aq=a.
特别地,a1an=a2an-1=a3an-2=….
(2)在公比为q的等比数列{an}中,数列am,am+k,am+2k,am+3k,…仍是等比数列,公比为qk;数列Sm,S2m-Sm,S3m-S2m,…仍是等比数列(此时q≠-1);an=amqn-m.
4.等比数列的特征
(1)从等比数列的定义看,等比数列的任意项都是非零的,公比q也是非零常数.
(2)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0.
5.等比数列的前n项和Sn
(1)等比数列的前n项和Sn是用错位相减法求得的,注意这种思想方法在数列求和中的运用.
(2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误。
另外学而思爱智康的老师还为大家精心准备了:
高中人教版全套电子教材+全科知识点汇总
点击链接?https://jinshuju.net/f/p4vjuF或下方图片即可领取!
同时,也向您推荐高中学业规划课程、高考志愿填报课程
点击链接?https://jinshuju.net/f/HXIXwC或下方图片即可预约!
以上就是小编特意为大家整理的高一人教版数学必修二知识点!北京高一数学加油站!的相关内容,同学们在学习的过程中如有疑问或者想要获取更多资料,欢迎拨打学而思爱智康免费电话: 更有专业的老师为大家解答相关问题!
小编推荐:
文章来源于网络整理,如有侵权,请联系删除,邮箱fanpeipei@100tal.com