北京
<返回切换城市

北京学而思1对1>高中数学>正文

高一人教版数学必修四第一章知识点梳理!北京学子快来看!

2020-03-19 18:13:33 来源:佚名
移动端banner-两小时1对1体验

免费领取新学期学习资料

单元测试卷丨学科知识同步丨期中期末卷等

点我下载电子资料

    点击领取→高中人教版全套电子教材+全科知识点汇总

高一人教版数学必修四先进章知识点梳理!北京学子快来看!同学们,高中学习是一个系统的过程,对于高中内容来说,预习、听课、复习、功课、笔记等等都是必不可少的环节,因此同学们一定要加油哦~~下面一起来看看高一人教版数学必修四先进章知识点梳理!

  两角和公式

  sin(A+B) = sinAcosB+cosAsinB

  sin(A-B) = sinAcosB-cosAsinB

  cos(A+B) = cosAcosB-sinAsinB

  cos(A-B) = cosAcosB+sinAsinB

  tan(A+B) = (tanA+tanB)/(1-tanAtanB)

  tan(A-B) = (tanA-tanB)/(1+tanAtanB)

  cot(A+B) = (cotAcotB-1)/(cotB+cotA)

  cot(A-B) = (cotAcotB+1)/(cotB-cotA)

 

  倍角公式

  tan2A = 2tanA/(1-tan^2 A)

  Sin2A=2SinA•CosA

  Cos2A = Cos^2 A--Sin^2 A

  =2Cos^2 A-1

  =1-2sin^2 A

 

  三倍角公式

  sin3A = 3sinA-4(sinA)^3;

  cos3A = 4(cosA)^3 -3cosA

  tan3a = tan a • tan(π/3+a)• tan(π/3-a)

 

  半角公式

  sin(A/2) = √{(1--cosA)/2}

  cos(A/2) = √{(1+cosA)/2}

  tan(A/2) = √{(1--cosA)/(1+cosA)}

  cot(A/2) = √{(1+cosA)/(1-cosA)}

  tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)

 

  和差化积

  sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]

  sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]

  cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]

  cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]

  tanA+tanB=sin(A+B)/cosAcosB

 

  积化和差

  sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)]

  cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]

  sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]

  cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]

 

  诱导公式

  sin(-a) = -sin(a)

  cos(-a) = cos(a)

  sin(π/2-a) = cos(a)

  cos(π/2-a) = sin(a)

  sin(π/2+a) = cos(a)

  cos(π/2+a) = -sin(a)

  sin(π-a) = sin(a)

  cos(π-a) = -cos(a)

  sin(π+a) = -sin(a)

  cos(π+a) = -cos(a)

  tgA=tanA = sinA/cosA

 

  公式一:

  设α为任意角,终边相同的角的同一三角函数的值相等:

  sin(2kπ+α)= sinα

  cos(2kπ+α)= cosα

  tan(2kπ+α)= tanα

  cot(2kπ+α)= cotα

 

  公式二:

  设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

  sin(π+α)= -sinα

  cos(π+α)= -cosα

  tan(π+α)= tanα

  cot(π+α)= cotα

 

  公式三:

  任意角α与 -α的三角函数值之间的关系:

  sin(-α)= -sinα

  cos(-α)= cosα

  tan(-α)= -tanα

  cot(-α)= -cotα

 

  公式四:

  利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

  sin(π-α)= sinα

  cos(π-α)= -cosα

  tan(π-α)= -tanα

  cot(π-α)= -cotα

 

  公式五:

  利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:

  sin(2π-α)= -sinα

  cos(2π-α)= cosα

  tan(2π-α)= -tanα

  cot(2π-α)= -cotα

 

  公式六:

  π/2±α及3π/2±α与α的三角函数值之间的关系:

  sin(π/2+α)= cosα

  cos(π/2+α)= -sinα

  tan(π/2+α)= -cotα

  cot(π/2+α)= -tanα

  sin(π/2-α)= cosα

  cos(π/2-α)= sinα

  tan(π/2-α)= cotα

  cot(π/2-α)= tanα

  sin(3π/2+α)= -cosα

  cos(3π/2+α)= sinα

  tan(3π/2+α)= -cotα

  cot(3π/2+α)= -tanα

  sin(3π/2-α)= -cosα

  cos(3π/2-α)= -sinα

  tan(3π/2-α)= cotα

  cot(3π/2-α)= tanα

  (以上k∈Z)

 

  以上就是小编为大家整理的高中人教版数学必修四三角函数知识点,希望对大家有所帮助! 

 

  另外学而思爱智康的老师还为大家精心准备了:

  高中人教版全套电子教材+全科知识点汇总

点击链接?https://jinshuju.net/f/p4vjuF或下方图片即可领取!

 

同时,也向您推荐高中学业规划课程、高考志愿填报课程

点击链接?https://jinshuju.net/f/HXIXwC或下方图片即可预约!

 

以上就是小编特意为大家整理的高一人教版数学必修四先进章知识点梳理!北京学子快来看!的相关内容,同学们在学习的过程中如有疑问或者想要获取更多资料,欢迎拨打学而思爱智康免费电话: 更有专业的老师为大家解答相关问题!

 

小编推荐:

  北京疫情期间的高三孩子如何准备?

2020北京西城区高三一模各科试题及答案解析汇总

文章来源于网络整理,如有侵权,请联系删除,邮箱fanpeipei@100tal.com

体验预约丨学而思1对1/小班课程