北京
<返回切换城市

北京学而思1对1>高中数学>正文

2019北京昌平区高二下学期数学期中试卷及答案

2019-03-30 23:47:47 来源:佚名
移动端banner-两小时1对1体验

免费领取新学期学习资料

单元测试卷丨学科知识同步丨期中期末卷等

点我下载电子资料

  2019北京昌平区高二下学期数学期中试题及答案!数学是理科的基础,大家要认真学习。高二的数学很较高的,所以大家要多多训练,这次的期中诊断题也是很好的材料,小编给大家整理了哦~下面看看小编为大家准备较新的2019北京昌平区高二下学期数学期中试题及答案内容,希望对大家的进步有所帮助。

 

      想要了解北京高二下学期期中诊断卷的相关资料,请点击加入【爱智康高中交流福利群】爱智康高中交流福利群 ,并直接向管理员“小康康”索取!爱智康高中交流福利群会不定期免费发放学习资料,高中以及高考政策等相关消息,请持题目,续关注!

 

  2019北京昌平区高二下学期数学期中试题及答案

 

暂未公布

2019北京昌平区高二下学期数学期中试题及答案暂时没有公布,诊断结束后,会先进时间分享给大家,所以大家要时时关注哈!

 

1.点击获取90份历年北京高二期中诊断真题及答案+答案解析:https://jinshuju.net/f/vQkOlG (填写姓名、电话信息后即可跳转百度云盘地址,免费获取)

 

2.想要完整版北京高二期中诊断真题及答案+答案解析,请点击加入【爱智康高中交流福利群】爱智康高中交流福利群 ,并直接向管理员“小康康”索取!爱智康高中交流福利群会不定期免费发放学习资料,高中以及高考政策等相关消息,请持续关注!

 

 

  一、求双曲线的标准方程


  求双曲线的标准方程 或 (a、b>0),通常是利用双曲线的有关概念及性质再 结合其它知识直接求出a、b或利用待定系数法.


  例1 求与双曲线 有公共渐近线,且过点 的双曲线的共轭双曲线方程.


  解 令与双曲线 有公共渐近线的双曲线系方程为 ,将点 代入,得 ,∴双曲线方程为 ,由共轭双曲线的定义,可得此双曲线的共轭双曲线方程为 .


  评 此例是“求与已知双曲线共渐近线的双曲线方程”类型的题.一般地,与双曲线 有公共渐近线的双曲线的方程可设为 (k?R,且k≠0);有公共焦点的双曲线方程可设为 ,本题用的是待定系数法.


  例2 双曲线的实半轴与虚半轴长的积为 ,它的两焦点分别为F1、F2,直线 过F2且与直线F1F2的夹角为 ,且 ,与线段F1F2的垂直平分线的交点为P,线段PF2与双曲线的交点为Q,且 ,建立适当的坐标系,求双曲线的方程.


  解 以F1F2的中点为原点,F1、F2所在直线为x轴建立坐标系,则所求双曲线方程为 (a>0,b>0),设F2(c,0),不妨设 的方程为 ,它与y轴交点 ,由定比分点坐标公式,得Q点的坐标为 ,由点Q在双曲线上可得 ,又 ,


  ∴ ,,∴双曲线方程为 .


  评 此例用的是直接法.


  二、双曲线定义的应用


  1、先进定义的应用


  例3 设F1、F2为双曲线 的两个焦点,点P在双曲线上,且满足∠F1PF2=900,求ΔF1PF2的面积.


  解 由双曲线的先进定义知,,两边平方,得 .


  ∵∠F1PF2=900,∴ ,


  ∴ ,


  ∴ .


  2、第二定义的应用


  例4 已知双曲线 的离心率 ,左、右焦点分别为F1、F2,左准线为l,能否在双曲线左支上找到一点P,使 是 P到l的距离d与 的比例中项?


  解 设存在点 ,则 ,由双曲线的第二定义,得 ,


  ∴ ,,又 ,


  即 ,解之,得 ,


  ∵ ,


  ∴ ,矛盾,故点P不存在.


  评 以上二例若不用双曲线的定义得到焦半径 、


  或其关系,解题过程将复杂得多.


  三、双曲线性质的应用


  例5 设双曲线 ( )的半焦距为c,


  直线l过(a,0)、(0,b)两点,已知原点到 的距离为 ,


  求双曲线的离心率.


  解析 这里求双曲线的离心率即求 ,是个几何问题,怎么把


  题目中的条件与之联系起来呢?如图1,


  ∵ ,,,由面积法知ab= ,考虑到 ,


  知 即 ,亦即 ,注意到a

 

 

 

  相关推荐:2019年北京市各区高二下学期期中试题及答案大汇总

       2019年北京昌平区高二下学期期中试题及答案汇总

       2019年北京市各区高一下学期期中试题及答案大汇总

 

  以上是小编对2019北京昌平区高二下学期数学期中试题及答案的详细介绍,只有把试题上涉及的知识点及书本上相应重难知识点吃透,通过试题演练才能牢固掌握,保证诊断时下笔如有神助。有关北京高二期中模考前辅导及考后规划的课程,请直接拨打免费咨询电话:!学习靠的是日积月累,绝不可以眼高手低。坚持才能取得较后的胜利!加油!

体验预约丨学而思1对1/小班课程