北京
<返回切换城市

北京学而思1对1>高中数学>正文

向量公式

2018-07-22 16:16:42 来源:佚名
移动端banner-两小时1对1体验

免费领取新学期学习资料

单元测试卷丨学科知识同步丨期中期末卷等

点我下载电子资料

  向量公式!在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。下面为大家分享向量公式!希望能帮到大家!

 

 

设a=(x,y),b=(x',y').

1、向量的加法

向量的加法满足平行四边形法则和三角形法则.

AB+BC=AC.

a+b=(x+x',y+y').

a+0=0+a=a.

向量加法的运算律:

交换律:a+b=b+a;

结合律:(a+b)+c=a+(b+c).

2、向量的减法

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0

AB-AC=CB.即“共同起点,指向被减”

a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').

4、数乘向量

实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣.

当λ>0时,λa与a同方向;

当λ<0时,λa与a反方向;

当λ=0时,λa=0,方向任意.

当a=0时,对于任意实数λ,都有λa=0.

注:按定义知,如果λa=0,那么λ=0或a=0.

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.

当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;

当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍.

数与向量的乘法满足下面的运算律

结合律:(λa)·b=λ(a·b)=(a·λb).

向量对于数的分配律(先进分配律):(λ+μ)a=λa+μa.

数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.

数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b.② 如果a≠0且λa=μa,那么λ=μ.

3、向量的的数量积

定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π].

定义:两个向量的数量积(内积、点积)是一个数量,记作a·b.若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣.

向量的数量积的坐标表示:a·b=x·x'+y·y'.

向量的数量积的运算率

a·b=b·a(交换率);

(a+b)·c=a·c+b·c(分配率);

向量的数量积的性质

a·a=|a|的平方.

a⊥b 〈=〉a·b=0.

|a·b|≤|a|·|b|.

向量的数量积与实数运算的主要不同点

1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2.

2、向量的数量积不满足消去律,即:由 a·b=a·c (a≠0),推不出 b=c.

3、|a·b|≠|a|·|b|

4、由 |a|=|b| ,推不出 a=b或a=-b.

4、向量的向量积

定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b.若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0.

向量的向量积性质:

∣a×b∣是以a和b为边的平行四边形面积.

a×a=0.

a∥b〈=〉a×b=0.

向量的向量积运算律

a×b=-b×a;

(λa)×b=λ(a×b)=a×(λb);

(a+b)×c=a×c+b×c.

注:向量没有除法,“向量AB/向量CD”是没有意义的。

  

小编推荐:

  等差数列公式-高中数学必修5第二章

  等比数列公式-高中数学必修5第二章

  等差数列易错点-高中数学必修5第二章

 

 

  爱智康高中教育频道分享的向量公式到这里就结束啦,有关高中数学辅导的课程,请直接拨打免费咨询电话:!学习靠的是日积月累,绝不可以眼高手低。只要大家学习认真,坚持不懈就一定能学好。

体验预约丨学而思1对1/小班课程