北京
<返回切换城市

北京学而思1对1>高考生物>正文

2017高考生物复习知识点:细胞质膜与跨膜运输(3)

2017-02-21 16:31:48 来源:佚名
移动banner-两小时1对1体验

免费领取新学期学习资料

单元测试卷丨学科知识同步丨期中期末卷等

点我下载电子资料
  21。流动镶嵌模型(fluidmosaicmodel)
 
  1972年Singer和Nicolson总结了当时有关膜结构模型及各种研究新技术的成就,提出了流动镶嵌模型,认为球形膜蛋白分子以各种镶嵌形式与脂双分子层相结合,有的附在内外表面,有的全部或部分嵌入膜中,有的贯穿膜的全层,这些大多是功能蛋白。
 
  流动相嵌模型有两个主要特点。其一,蛋白质不是伸展的片层,而是以折叠的球形镶嵌在脂双层中,蛋白质与膜脂的结合程度取决于膜蛋白中氨基酸的性质。第二个特点就是膜具有一定的流动性,不再是封闭的片状结构,以适应细胞各种功能的需要。
 
  这一模型强调了膜的流动由性和不对称性,较好地体现细胞的功能特点,被广泛接受,也得到许多实验的支持。后来又发现碳水化合物是以糖脂或糖蛋白的形式存在于膜的外侧表面。
 
  22。孔蛋白(porin)
 
  孔蛋白是存在于细菌质膜的外膜、线粒体和叶绿体的外膜上的通道蛋白,它们允许较大的分子通过,其中线粒体孔蛋白可通过的较大分子为6000道尔顿,而叶绿体的孔蛋白则可通过相对分子质量在10,000到13,000之间的物质。
 
  孔蛋白是膜整合蛋白,它的膜脂结合区与其他的跨膜蛋白不同,不是α螺旋,而是β折叠。
 
  23。冰冻断裂(freezefracture)
 
  一种制备电子显微镜样品的方法。将组织放在液氮中助力下冷冻,然后用冰刀使样品断裂分割,通过金属复形可进行电镜观察。
 
  24。膜蛋白放射性标记法(radioactivelabelingprocedure)
 
  研究细胞膜蛋白分布不对称的一种方法。
 
  实验中首先要分离细胞膜,然后用乳过氧化物酶进行膜蛋白标记。由于过氧化物酶的分子较大而不能透过细胞膜,这样可以用于标记膜外表面的蛋白,包括外周蛋白和整合蛋白的外部分。标记后,分离膜蛋白,电泳分离和放射自显影进行鉴定。若是要标记膜内侧的蛋白,则需将膜置于低离子强度的溶液中以提高膜的通透性,使乳过氧化物酶进入膜泡进行内侧蛋白的标记。
 
  25。相变(phasetransition)
 
  膜的流动镶嵌模型说明生物膜是一种动态的结构,具有膜脂的流动性(fluidity)和膜蛋白的运动性(mobility)。
 
  膜的流动性主要是由膜的双脂层的状态变化引起的。在生理条件下,膜脂多呈液晶态,温度下降至某点,则变为晶态。一定温度下,晶态又可溶解再变成液晶态。这种临界温度称为相变温度,在不同温度下发生的膜脂状态的改变称为相变(phasetransition)。
 
  26。侧向扩散(lateraldiffusion)
 
  又称侧向迁移。在同一单层内的脂分子经常互相换位,其速度相当快,有人推测磷脂以这种方式从细胞一端扩散到另一端只需1~2秒。这种运动始终保持脂分子在质膜中的排布方向,亲水的基团朝向膜表面,疏水的尾指向膜的内部。
 
  27。翻转扩散(transversediffusion)
 
  又称为翻转(flip-flop)。它是指脂分子从脂双层的一个层面翻转至另一个层面的运动。磷脂发生翻转运动时,磷脂的亲水头部基团必须克服内部疏水区的阻力,这在热力学上是不利的。但是有些细胞含有翻转酶(flipase)能够促使某些磷脂从膜脂的一叶翻转到另一叶,所以这些酶在维持膜脂的不对称分布中起重要作用。
 
  28。细胞融合(cellfusion)
 
  自发条件下或人工诱导下,两个不同基因型的细胞或原生质体融合形成一个杂种细胞。基本过程包括细胞融合导致异核体(heterokaryon)的形成,异核体通过细胞有丝分裂导致核的融合,形成单核的杂种细胞。有性生殖时发生正常的细胞融合,即由两个配子融合成一个合子。
 
  人、鼠细胞融合实验分三步进行∶首先用荧光染料标记抗体∶将小鼠的抗体与发绿色荧光的荧光素(fluorescin)结合,人的抗体与发红色荧光的罗丹明(rhodamine)结合;第二步是将小鼠细胞和人细胞在灭活的仙台病毒的诱导下进行融合;较后一步将标记的抗体加入到融合的人、鼠细胞中,让这些标记抗体同融合细胞膜上相应的抗原结合。开始,融合的细胞一半是红色,一半是绿色。在37℃下40分钟后,两种颜色的荧光在融合的杂种细胞表面呈均匀分布,这说明抗原蛋白在膜平面内经扩散运动而重新分布。这种过程不需要ATP。如果将对照实验的融合细胞置于低温(1℃)下培育,则抗原蛋白基本停止运动。这一实验结果令人信服地证明了膜整合蛋白的侧向扩散运动。
 
  29。成斑(patching)、成帽(capping)反应
 
  淋巴细胞通过产生抗体对外源蛋白进行应答,抗体分子位于细胞质膜上。蛋白质能够在不同的动物中诱导产生抗体,如果将小鼠的抗体注入兔子中,兔子将会产生抗小鼠抗体的抗体。可以从兔子的血液中分离这种抗体,并将这种抗体共价连接到荧光染料上,就可以通过荧光显微镜进行观察。
 
  当兔子的抗小鼠的抗体与小鼠的淋巴细胞混合时,带有标记的抗体就会同小鼠淋巴细胞质膜上的抗体结合,并分布在整个淋巴细胞的表面,但很快就会成块或成斑。导致这种现象的原因是抗体是多价的,每一个兔子的抗体能够同小鼠细胞质膜表面的多个抗体分子反应,也就是说小鼠的每一个膜抗体将同多个兔子的抗体反应。这样,在小鼠淋巴细胞的细胞质膜表面形成“兔抗小鼠抗体分子-小鼠膜结合抗体”的斑。斑逐渐聚集扩大,当小鼠淋巴细胞质膜表面抗体全部同兔子的抗小鼠抗体结合后,将会在细胞表面的一侧形成“帽子”结构,较后通过内吞作用进入细胞。很显然,如果小鼠细胞质膜中的抗体蛋白不能自由的进行侧向扩散的话,斑和帽都是不能形成的。
 
  30。光脱色荧光恢复技术(fluorescencerecoveryafterphotobleachingFRAP)
 
  研究膜流动性的一种方法。首先用荧光物质标记膜蛋白或膜脂,然后用激光束照射细胞表面某一区域,使被照射区域的荧光淬灭变暗形成一个漂白斑。由于膜的流动性,漂白斑周围的荧光物质随着膜蛋白或膜脂的流动逐渐将漂白斑覆盖,使淬灭区域的亮度逐渐增加,较后恢复到与周围的荧光光强度相等。
 
  细胞膜蛋白的标记方法有很多种。可以用非特异性的染料,如异硫氰酸荧光素(fluoresceinisothiocyanate,FITC)将细胞膜蛋白全部进行标记。也可用特异性的探针,如荧光抗体,标记特异的膜蛋白。膜蛋白一旦被标记就可用激光束进行局部照射处理,使荧光脱色,形成直径约为1μm的白斑。若是可移动的膜蛋白,则会因蛋白的移动,使白斑消失,若是不能移动的蛋白。则白斑不会消失。
 
  根据荧光恢复的速度,可推算膜脂的扩散速度为每秒钟为几个微米,而膜蛋白的扩散速度变化幅度较大,少数膜蛋白的扩散速度可达到膜脂的速度,大多数蛋白的扩散速度都比膜脂慢,还有一些膜蛋白完全限于某一个区域。正是这种限制,使膜形成一些特定的膜微区(membranedomain),这些微区具有不同的蛋白组成和功能。这实际上是膜蛋白不对称分布带来膜功能的不对称。
 
  FRAP技术也有它的不足之处。先进,它只能检测膜蛋白的群体移动,而不能观察单个蛋白的移动。其次,它不能证明膜蛋白在移动时是否受局部条件的限制。为了克服这些不足,发展了单颗粒示综(single-particletracking,SPT)技术,可以用抗体金(直径15~40nm)来标记单个膜蛋白,然后通过机控制的摄像显微镜进行观察。
 

体验预约丨学而思1对1/小班课程