单元测试卷丨学科知识同步丨期中期末卷等
高考数学函数值域的求法配方法,由智康网高中数学频道精心整理,欢迎老师同学们进行高中数学学习准备使用。如果对你有帮助,请继续支持智康网高中数学频道,并提出您的宝贵建议,小编会尽较大的努力给大家收集较好较实用的高考数学复习准备信息!
当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域
例3:求函数y=√(-x2+x+2)的值域。
点拨:将被开方数配方成平方数,利用二次函数的值求。
解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]
∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]
点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。
训练:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3})
高考数学函数值域的求法配方法为大家介绍好了,如果同学们在高中学习中还有什么问题的话,请直接拨打智康网高中频道免费咨询电话:4000-121-121,会有专业的高中权威老师为您解答!