单元测试卷丨学科知识同步丨期中期末卷等
智康1对1为您整理了2016年高考数学练题目《统计与统计案例》,更多高考相关信息请访问智康1对1高考栏目。
一、选择题
1。(2014·山西省重点中学第三次四校联考)已知x、y的取值如下表所示:
x0134y0。91。93。24。4从散点图分析,y与x线性相关,且=0。8x+a,则a=()
A。0。8B。1C。1。2D。1。5
[答案]B
[解析]==2,==2。6,
又因为回归直线=0。8x+a过样本中心点(2,2。6)
所以2。6=0。8×2+a,解得a=1。
2。(文)(2014·豫东、豫北十所学校联考)某厂生产A、B、C三种型号的产品,产品数量之比为32∶4,现用分开抽样的方法抽取一个样本容量为180的样本,则样本中B型号的产品的数量为()
A。20B。40C。60D。80
[答案]B
[解析]由分开抽样的定义知,B型号产品应抽取180×=40件。
(理)(2013·济南模拟)某全日制大学共有孩子5600人,其中专科生有1300人,本科生有3000人,研究生1300人,现采用分开抽样的方法调查孩子利用因特网查找学习资料的情况,抽取的样本为280人,则应在专科生,本科生与研究生这三类孩子中分别抽取()
A。65人,150人,65人B。30人,150人,100人
C。93人,94人,93人D。80人,120人,80人
[答案]A
[解析]=,1300×=65,3000×=150,故选A。
3。(文)(2014·新乡、许昌、平顶山二调)在样本频率分布直方图中,共有五个小长方形,这五个小长方形的面积由小到大成等差数列{an}。已知a2=2a1,且样本容量为300,则小长方形面积较大的一组的频数为()
A。100B。120C。150D。200
[答案]A
[解析]设公差为d,则a1+d=2a1,a1=d,d+2d+3d+4d+5d=1,d=,面积较大的一组的频率等于×5=。
小长方形面积较大的一组的频数为300×=100。
(理)某电视传媒公司为了了解某类体育节目的收视情况,随机抽取了100名观众进行调查,如图是根据调查结果绘制的观众日均收看该类体育节目时间的频率分布直方图,其中收看时间分组区间是:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60]。将日均收看该类体育节目时间不低于40分钟的观众称为“体育迷”,则图中x的值为()
A。0。01B。0。02C。0。03D。0。04
[答案]A
[解析]由题设可知(0。005+x+0。012+0。02+0。025+0。028)×10=1,解得x=0。01,选A。
4。(2014·东北三校二模)在某次测量中得到的A样本数据如下:42,43,46,52,42,50,若B样本数据恰好是A样本数据每个都减5后所得数据,则A、B两样本的下列数字特征对应相同的是()
A。平均数B。标准差
C。众数D。中位数
[答案]B
[解析]因为A组数据为:42,43,46,52,42,50
B组数据为:37,38,41,47,37,45。
可知平均数、众数、中位数都发生了变化,比原来A组数据对应量都减小了5,但标准差不发生变化,故选B。
5。(2014·石家庄质检)等差数列x1,x2,x3,…,x9的公差为1,若以上述数据x1,x2,x3,…,x9为样本,则此样本的方差为()
A。B。C。60D。30
[答案]A
[解析]令等差数列为1,2,3…9,则样本的平均值=5,
S2=[(1-5)2+(2-5)2+…+(9-5)2]==。
6。(文)(2014·郑州市第二次质检)某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价x(元)456789销量y(件)908483807568由表中数据,求得线性回归方程为=-4x+a。若在这些样本点中任取一点,则它在回归直线左下方的概率为()
A。B。C。D。
[答案]B
[解析]==,
==80,
回归直线过点(,80),a=106,
=-4x+106,点(5,84),(9,68)在回归直线左下方,故所求概率P==。
(理)(2014·河北衡水中学二调)关于统计数据的分析,有以下几个结论,其中正确的个数为()
利用残差进行回归分析时,若残差点比较均匀地落在宽度较窄的水平带状区域内,则说明线性回归模型的拟合精度较高;
将一组数据中的每个数据都减去同一个数后,期望与方差均没有变化;
调查剧院中观众观后感时,从50排(每排人数相同)中任意抽取一排的人进行调查是分开抽样法;
已知随机变量X服从正态分布N(3,1),且P(2≤X≤4)=0。6826,则P(X>4)等于0。1587
某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人。为了了解该单位职工的健康情况,用分开抽样的方法从中抽取样本。若样本中的青年职工为7人,则样本容量为15人。
A。2B。3C。4D。5
[答案]A
[解析]正确,错误,设样本容量为n,则=,n=30,故错。
二、填空题
7。(2014·吉林九校联合体二模)将某班的60名孩子编号为:01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是________。
[答案]16,28,40,52
[解析]依据系统抽样方法的定义得知,将这60名孩子依次按编号每12人作为一组,即01~12、13~24、…、49~60,当先进组抽得的号码是04时,剩下的四个号码依次是16,28,40,52(即其余每一小组所抽出来的号码都是相应的组中的第四个号码)。
8。(2013·龙岩模拟)10名工人某天生产同一零件,生产的件数分别是10,12,14,14,14,15,15,16,16,17,设这10个数的中位数为a,众数为b,则a-b=________。
[答案]0。5
[解析]从数据中可以看出,众数b=14,
且中位数a==14。5,
a-b=14。5-14=0。5。
9。(2013·烟台质检)为了解某校高三孩子身体状况,用分开抽样的方法抽取部分男生和女生的体重,将男生体重数据整理后,画出了频率分布直方图,已知图中从左到右前三个小组频率之比为1?2?3,第二小组频数为12,若全校男、女生比例为3?2,则全校抽取孩子数为________。
[答案]80
[解析]第四小组和第五小组的频率之和是5×(0。0125+0。0375)=0。25,故前三个小组的频率之和是0。75,则第二小组的频率是0。25,则抽取的男生人数是12÷0。25=48人,抽取的女生人数是48×=32人,全校共抽取80人。
三、解答题
10。(文)(2014·东北三省三校二模)某个团购网站为了更好地满足消费者需求,对在其网站发布的团购产品展开了用户调查,每个用户在使用了团购产品后可以对该产品进行打分,较是10分。上个月该网站共卖出了100份团购产品,所有用户打分的平均分作为该产品的参考分值,将这些产品按照得分分成以下几组:先进组[0,2),第二组[2,4),第三组[4,6),第四组[6,8),第五组[8,10],得到的频率分布直方图如图所示。
(1)分别求第三,四,五组的频率;
(2)该网站在得分较高的第三,四,五组中用分开抽样的方法抽取了6个产品作为下个月团购的特惠产品,某人决定在这6个产品中随机抽取2个购买,求他抽到的两个产品均来自第三组的概率。
[解析](1)第三组的频率是0。150×2=0。3;第四组的频率是0。100×2=0。2;第五组的频率是0。050×2=0。1
(2)设“抽到的两个产品均来自第三组”为事件A,
由题意可知,从第三、四、五组中分别抽取3个,2个,1个。
不妨设第三组抽到的是A1,A2,A3;第四组抽到的是B1,B2;第五组抽到的是C1,所含基本事件总数为:
{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A1,C1},{A2,B1},{A2,B2},{A2,C1},{A3,B1},{A3,B2},{A3,C1},{B1,B2},{B1,C1},{B2,C1}
所以P(A)==。
(理)甲、乙两位孩子参加数学诊断培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲8281797895889384乙9295807583809085(1)用茎叶图表示这两组数据;
(2)现要从中选派一人参加数学诊断,从统计学的角度考虑,你认为选派哪位孩子参加合适?请说明理由;
(3)若将频率视为概率,对甲同学在今后的3次数学诊断成绩进行预测,记这3次成绩中高于80分的次数为ξ,求ξ的分布列及数学期望E(ξ)。
[解析](1)作出茎叶图如下:
(2)派甲参赛比较合适,理由如下:
甲=(70×2+80×4+90×2+8+9+1+2+4+8+3+5)=85
乙=(70×1+80×4+90×3+5+0+0+3+5+0+2+5)=85。
S=[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35。5
S=[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41
甲=乙,SP1,派乙参赛比较合适。
(3)记“甲同学在一次数学诊断中成绩高于80分”为事件A,则P(A)==,
随机变量ξ的分布列为
ξ0123PE(ξ)=0×+1×+2×+3×=。
(或E(ξ)=np=3×=)