单元测试卷丨学科知识同步丨期中期末卷等
北京初中二次函数教学视频!时间过得真快,半个学期又过去了,期中诊断在等着大家,数学复习好了吗?二次函数这一类的题型较重要的就是读题要细,在完全理解试题想要考查的是什么之后在进入解题过程,这样能让同学们优秀的绕开相关人员设置的陷阱,下面,小编为大家带来北京初中二次函数教学视频,希望可以给大家带来帮助哟~
I.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:
y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)
则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式
一般式:y=ax^2;+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2;+k[抛物线的顶点P(h,k)]
交点式:y=a(x-x1)(x-x2)[仅于与x轴有交点A(x1,0)和B(x2,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2ak=(4ac-b^2;)/4ax1,x2=(-b±√b^2;-4ac)/2a
III.二次函数的图像
在平面直角坐标系中作出二次函数y=x²的图像,
可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质
1.抛物线是轴对称图形。对称轴为直线
x=-b/2a。
对称轴与抛物线先进的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为
P[-b/2a,(4ac-b^2;)/4a]。
当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ=b^2-4ac>0时,抛物线与x轴有2个交点。
Δ=b^2-4ac=0时,抛物线与x轴有1个交点。
Δ=b^2-4ac<0时,抛物线与x轴没有交点。
V.二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2;+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax^2;+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
点击了解>>>学而思爱智康中考冲刺精品课程&咨询课程请拨打:
二次函数图形与性质
二次方程零换y,二次函数便出现;
全体实数定义域,图像叫做抛物线;
抛物线有对称轴,两边单调正相反;
开口、顶点和交点,它们确定图象现;
开口、大小由a断,c与Y轴来相见;
b的符号较特别,符号与a相关联;
顶点非高即较低。上低下高很显眼,
如果要画抛物线,平移也可去描点;
提取配方定顶点,两条途径再挑选,
若要平移也不难,先画基础抛物线,
列表描点后连线,平移规律记心间,
左加右减括号内,号外上加下要减。
2020年的中考越来越近了,同学们要花些时间复习一下数学知识点哟。想了解相关课程的同学,请拨打学而思爱智康免费咨询电话:!
北京初中二次函数教学视频就给大家分享到这里,另外学而思学科老师还给大家整理了一份《北京初二下期中复习资料合集》。
点击领取:《北京初二下期中复习资料合集》复习资料
查缺补漏,助你备战期中诊断!
部分资料截图如下:
点击链接领取完整版资料:https://jinshuju.net/f/EYm9ow
同时也向您的孩子推荐学而思爱智康中考冲刺精品课程,点击链接:http://www.jiajiaoban.com/z2019/zkzfx/index.html 或者下方图片即可预约
相关推荐: