单元测试卷丨学科知识同步丨期中期末卷等
北京初中数学二次方程知识点!一元二次方程是初中数学的重要内容,是中考的热点,它是在学习一元一次方程、二元一次方程、分式方程等基础之上学习的,它也是一种数学建模的方法。学好一元二次方程是学好二次函数不可或缺的,所以大家一定要重点关注哟。下面,小编为大家带来北京初中数学二次方程知识点,希望可以给大家带来帮助哟~
一、目标与要求
1.了解一元二次方程及有关概念,一般式ax2+bx+c=0(a≠0)及其派生的概念,应用一元二次方程概念解决一些简单题目。
2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程,掌握依据实际问题建立一元二次方程的数学模型的方法,应用熟练掌握以上知识解决问题。
二、重点
1.一元二次方程及其它有关的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题。
2.判定一个数是否是方程的根;
3.用配方法、公式法、因式分解法降次──解一元二次方程。
4.运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次──转化的数学思想。
5.利用实际问题建立一元二次方程的数学模型,并解决这个问题.
三、难点
1.一元二次方程配方法解题。
2.通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念。
3.用公式法解一元二次方程时的讨论。
4.通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程。
5.建立一元二次方程实际问题的数学模型,方程解与实际问题解的区别。
6.由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根。
7.知识框架
四、知识点、概念总结
一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的较高次数是2(二次)的方程,叫做一元二次方程。
2.一元二次方程有四个特点:
(1)含有一个未知数;
(2)且未知数次数较高次数是2;
(3)是整式方程。要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。如果能整理为 ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程。
(4)将方程化为一般形式:ax2+bx+c=0时,应满足(a≠0)
3. 一元二次方程的一般形式:一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0)。
一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
点击了解>>>学而思爱智康中考冲刺精品课程&咨询课程请拨打:
配方法
解一元二次方程时,在方程的左边加上一次项系数一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里,这种方法叫做配方,配方后就可以用因式分解法或直接开平方法了,这样解一元二次方程的方法叫做配方法。
注意:用配方法解一元二次方程x2+px+q=0,当对方程的左边配方时,一定记住在方程的左边加上一次项系数的一半的平方后,还要再减去这个数。
用配方法解二次项系数为1的一元二次方程的步骤:
(1)在方程的左边加上一次项系数的一半的平方,再减去这个数;
(2)把原方程变为(x+m)2=n的形式。
(3)若n≥0,用直接开平方法求出x的值,若n<0,原方程无解。
用配方法解二次项系数不是1的一元二次方程
当一元二次方程的形式为ax2+bx+c=0(a≠0,a≠1)时,用配方法解一元二次方程的步骤:
(1)先把二次项的系数化为1:方程的左、右两边同时除以二项的系数;
(2)移项:在方程的左边加上一次项系数的一半的平方,再减去这个数,把原方程化为(x+m)2=n的形式;
(3)若n≥0,用直接开平方法或因式分解法解变形后的方程。
一元二次方程是诊断的重点知识,大家一定要认真学习。想了解相关课程的同学,请拨打学而思爱智康免费咨询电话:!
北京初中数学二次方程知识点就给大家分享到这里,另外学而思学科老师还给大家整理了一份《北京初二下期中复习资料合集》。
点击领取:《北京初二下期中复习资料合集》复习资料
查缺补漏,助你备战期中诊断!
部分资料截图如下:
点击链接领取完整版资料:https://jinshuju.net/f/EYm9ow
同时也向您的孩子推荐学而思爱智康中考冲刺精品课程,点击链接:http://www.jiajiaoban.com/z2019/zkzfx/index.html 或者下方图片即可预约
相关推荐:
③ 北京中功课三角形