
单元测试卷丨学科知识同步丨期中期末卷等
初二数学学什么(三篇)!孩子功课的目的在于巩固和消化所学的知识,并使知识转化为技能技巧。对于培养孩子的独立学习的能力和习惯,发展孩子的智力和创造能力有着重大意义。下面为大家分享初二数学学什么(三篇)!希望能够帮到大家!
初二数学学什么(篇一)
(一)运用公式法:
我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。
(二)平方差公式
1.平方差公式
(1)式子: a2-b2=(a+b)(a-b)
(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。
(三)因式分解
1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反过来,就可以得到:
a2+2ab+b2 =(a+b)2
a2-2ab+b2 =(a-b)2
这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点
①项数:三项
②有两项是两个数的的平方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
(五)分组分解法
我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式.
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m +n)
做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m+ n)
=(m +n)•(a +b).
这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.
(六)提公因式法
1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.
2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:
1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于
一次项的系数.
2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:
① 列出常数项分解成两个因数的积各种可能情况;
②尝试其中的哪两个因数的和恰好等于一次项系数.
3.将原多项式分解成(x+q)(x+p)的形式.
(七)分式的乘除法
1.把一个分式的分子与分母的公因式约去,叫做分式的约分.
2.分式进行约分的目的是要把这个分式化为较简分式.
3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.
4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,
(x-y)3=-(y-x)3.
5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.
6.注意混合运算中应先算括号,再算乘方,然后乘除,较后算加减.
初二数学学什么(篇二)
过两点有且只有一条直线
两点之间线段较短
同角或等角的补角相等
同角或等角的余角相等
过一点有且只有一条直线和已知直线垂直
直线外一点与直线上各点连接的所有线段中,垂线段较短
平行公理 经过直线外一点,有且只有一条直线与这条直线平行
如果两条直线都和第三条直线平行,这两条直线也互相平行
同位角相等,两直线平行
内错角相等,两直线平行
同旁内角互补,两直线平行
两直线平行,同位角相等
两直线平行,内错角相等
两直线平行,同旁内角互补
定理 三角形两边的和大于第三边
推论 三角形两边的差小于第三边
三角形内角和定理 三角形三个内角的和等于180°
推论1 直角三角形的两个锐角互余
推论2 三角形的一个外角等于和它不相邻的两个内角的和
推论3 三角形的一个外角大于任何一个和它不相邻的内角
全等三角形的对应边、对应角相等
边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
边边边公理(SSS) 有三边对应相等的两个三角形全等
斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
定理1 在角的平分线上的点到这个角的两边的距离相等
定理2 到一个角的两边的距离相同的点,在这个角的平分线上
角的平分线是到角的两边距离相等的所有点的集合
等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
推论3 等边三角形的各角都相等,并且每一个角都等于60°
等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等
推论1 三个角都相等的三角形是等边三角形
推论 2 有一个角等于60°的等腰三角形是等边三角形
在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
直角三角形斜边上的中线等于斜边上的一半
定理 线段垂直平分线上的点和这条线段两个端点的距离相等
逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
定理1 关于某条直线对称的两个图形是全等形
定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称
逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直
勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角
定理 四边形的内角和等于360°
四边形的外角和等于360°
多边形内角和定理 n边形的内角的和等于(n-2)×180°
推论 任意多边的外角和等于360°
平行四边形性质定理1 平行四边形的对角相等
平行四边形性质定理2 平行四边形的对边相等
推论 夹在两条平行线间的平行线段相等
平行四边形性质定理3 平行四边形的对角线互相平分
平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
平行四边形判定定理3 对角线互相平分的四边形是平行四边形
平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
矩形性质定理1 矩形的四个角都是直角
初二数学学什么(篇三)
先进章 勾股定理
定义:如果直角三角形两条直角边分别为a,b,斜边为c,即直角三角形两直角边的平方和等于斜边的平方。
判定:如果三角形的三边长a,b,c满足a +b = c ,那么这个三角形是直角三角形。 定义:满足a +b =c 的三个正整数,称为勾股数。
第二章 实数
定义:任何有限小数或无限循环小数都是有理数。无限不循环小数叫做无理数 (有理数总可以用有限小数或无限循环小数表示)
一般地,如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。 特别地,我们规定0的算术平方根是0。
一般地,如果一个数x的平方等于a,那么这个数x就叫做a的平方根(也叫二次方根) 一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。 求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数。
一般地,如果一个数x的立方等于a,那么这个数x就叫做a的立方根(也叫做三次方根)。 正数的立方根是正数;0的立方根是0;负数的立方根是负数。 求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数。 有理数和无理数统称为实数,即实数可以分为有理数和无理数。
每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。即实数和数轴上的点是一一对应的。
在数轴上,右边的点表示的数比左边的点表示的数大。
第三章 图形的平移与旋转
定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移不改变图形的形状和大小。
经过平移,对应点所连的线段平行也相等;对应线段平行且相等,对应角相等。
在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称旋转中心,转动的角称为旋转角。旋转不改变图形的大小和形状。
任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。
第四章 四边形性质探索
定义:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。
平行四边形: 两组对边分别平行的四边形.。 对边相等,对角相等,对角线互相平分。 两组对边分别平行的四边形是平行四边形,两组对边分别相等的四边形是平行四边形,两条对角线互相平分的四边形是平行四边形,一组对边平行且相等的四边形是平行四边形
菱形 :一组邻边相等的平行四边形 „„(平行四边形的性质)。四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。 一组邻边相等的平行四边形是菱形,对角线互相垂直的平行四边形是菱形,四条边都相等的四边形是菱形。
矩形: 有一个内角是直角的平行四边形 „„(平行四边形的性质)。对角线相等,四个角都是直角。 有一个内角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形。
正方形: 一组邻边相等的矩形。 正方形具有平行四边形、菱形、矩形的一切性质。 一组邻边相等的矩形是正方形,一个内角是直角的菱形是正方形。
梯形: 一组对边平行而另一组对边不平行的四边形。 一组对边平行而另一组对边不平行的四边形是梯形 。 等腰梯形 :两条腰相等的梯形。 同一底上的两个内角相等,对角线相等。 两腰相等的梯形是等腰梯形,
同一底上两个内角相等的梯形是等腰梯形 。
直角梯形 :一条腰和底垂直的梯形。 一条腰和底垂直的梯形是直角梯形。
多边形:在平面内,由若干条不在同一条直线上的线段首尾顺次相连组成的封闭图形叫做多边形。n边形的内角和等于(n-2)×180
多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角。 多边形的外角和都等于360°。三角形、四边形和六边形都可以密铺。
定义:在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
第五章 位置的确定
位置表示方法:方位角加距离;坐标;经纬度„„
定义:在平面内,两条互相垂直且有公共原点的书轴组成平面直角坐标系。
通常,两条数轴分别至于水平位置与铅直位置,取向右与向上方向分别为两条数轴的正方向。水平的数轴叫做x轴或横轴,铅直的数轴叫做y轴或纵轴,x轴和y统称坐标轴,它们的公共原点O称为直角坐标系的原点。
图形随坐标变化:向上/下/左/右平移X个单位长度、横向/纵向拉长X倍、横向/纵向压缩X倍、放大/缩小了X倍、关于x/y轴成轴对称、关于原点O成中心对称„„
第六章 一次函数
定义:一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中是x自变量,y是因变量。
若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。
把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系中描出它的对应点,所有这些点组成的图形叫做该函数的图象。 正比例函数y=kx的图象是经过原点(0,0)的一条直线。 在一次函数y=kx+b中,
当k>0时,的值随值的增大而增大; 当k<0时,的值随值的增大而减小。
小编推荐:
爱智康初中教育频道分享的初二数学学什么(三篇)到这里就结束啦,挖了多个井,都未出水,结果劳而无功,一无所获。其实不是下面没有水,而是挖的深度都不够。所以在学习的过程中,我们应一点一滴的积累,只有这样我们才能顺利通过成考。更多有关初中辅导的课程,请直接拨打免费咨询电话:
!